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MODAL IDENTITIES FOR MULTIBODY ELASTIC SPACECRAFT --
AN AID TO SELECTING MODES FOR SIMULATION
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ABSTRACT

This paper answers the question: Which set of
modes furnishes a higher fidelity math model of
dynamics of & multibody, deformable spacecraft--
hinges-free or hinges-locked vehicle modes? Two
sets of general, discretized, linear equations of
motion of a spacecraft with an arbitrary number of
deformable appendages, each articulated directly
to the core body, are obtained using the above two
families of modes. By a comparison of these equa=
tions, ten sets of modal identities are con-
structed which involve modal momenta coefficients
and frequencies associated with both classes of
modes. The sums of infinite series that appear in
the identities are obtained in terms of mass, and
first and second moments of inertia of the append-
ages, core body, and vehicle by using certain
basic identities concerning appendage modes.
Applying the above identities to a four-body
spacecraft, the hinges-locked vehicle modes are
found to yield a higher fidelity model than
hinges-free modes, because the latter modes have
nonconverging modal coefficients--a characteristic
proved and illustrated in the paper.

I. INTRODUCTION

The use of appendage modes for simulating
dynamics and control of multibody flexible space-
craft is widespread, in as much as they are emi-
nently suitable for both small angle (linear) and
large angle (nonlinear) dynamics. To win this
benefit, however, a simulation engineer must
retain a sufficient number of these modes for each
appendage so that the simulation program has
acceptable fidelity. When there are a large number
of appendages in a spacecraft, and/or an appendage
has a large mass and moment of inertia relative to
those of the rigid core body of the spacecraft,
the total number of appendage modes for a high
accuracy model may become unacceptably great
(Reference 1), possibly diminishing the utility of
the appendage modes for simulationm. Furthermore,
control systems for a multibody spacecraft are
most easily designed by considering one axis of
one body at a time, because different bodies
generally serve different purposes and 80 the
control systems' intrinsic features are generally
quite different. Having designed them so, to
ensure they all perform as desired in the mutual
presence and in the presence of flexibility, a
compact mathematical model of the entire space-
craft's dynamics is desired so that the control
designs can be refined fast and economically about
all axes. For this purpose, the linear, small
angle models of spacecraft flexible dynamics are
just right, and so the engineer could beneficially
employ the vehicle modes of the spacecraft.
Hughesz conceived of two families of vehicle modes
for multibody spacecraft: ‘"hinges-free" and
"hinges~locked" vehicle modes (although he does
not use this terminology). By definition, hinges-

obtained by leaving all hinges

free modes are
free, that is, unlocked and unforced, so that the
associated natural vehicle modes may contain

motion of the articulated bodies relative to the
inboard bodies. Conversely, in the hinges-locked
modes, the relative motion of the articulated
bodies is, by definition, zero, and some force or
torque is applied at the hinges to keep the motion
s0. In Reference J, these vehicle modes are form-
ulated, and their zero linear and angular momentum
properties, the orthogonality conditions, and the
associated modal momenta coefficients are theo-
rized.

A critical question whose answer is sought in
this paper is: Between the hinges-free and hinges-
locked vehicle modes, which one furnishes a higher
fidelity dynamic model, retaining the same number
of modes in the simulation? To this end, a multi-
body spacecraft is considered in this paper that
consists of a rigid core body, and N flexible
appendages, each articulated directly to the core
body. Three sets of discrete motion equations of
this spacecraft are obtained from a continuum set
by using appendage modes, hinges-free vehicle
modes, and hinges-locked vehicle modes. To compare
the last two families of modes, modal identities
are devised that express the sum of contribution
of all infinite number of modes in terms of first
and second moments of inertia of the articulated
bodies, the core body, and the vehicle, following
Hughes®. The analysis is amply illustrated, and
definitive conclusions are summarized at the end
of the paper. Although for concreteness, the paper
considers a multibody spacecraft with level-l
articulated bodies {the terminology of Ho”), it
will be clear that the conclusions drawn apply to
a wider range of multibody spacecrafc.

II. FORMULATION OF CONTINUUM EQUATIONS OF MOTION

Fig. 1 portrays an N+¢l-body spacecraft that
consists of a three-axis stabilized core rigid
body By, and deformable bodies El""’EN' each
articulated directly to the core body. The motion
equations will be developed with respect to the
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Figure 1. An N+l1-Body Spacecraft With

N Articulated, Deformable Appendages
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reference point O in Fig. 1| which is neither the
mass center G}O of the body By, nor the mass
center @ of the entire vehicle V. This generality
in the formulation s warranted because the
NASTRAN modal data corresponding to such multibody
spacecraft are often with respect to an arbitrary
reference node 0, and the mass centers are gen-
erally nodeless =empty points. The mass of each
body is denoted m_ (p=0,1,...,N); the mass of all
N articulated bodies together, m,; and the mass of
antire spacecraft, m; clearly, m = my + m,. The
first moment of mass of By relative to 0 is cq,
and those for the hinged bodias (j=1,...,N), mea-
sured from the respective hinges 0., are
denoted ¢.. Similar to ¢ (p=0,1,...,N), the
vector L7 emanates from O and r . from O:. Note
that the subscript p covers all bodies, while j
covers only the articulated bodies. The vectors
b. (j=1,...,N) originating from O locate the
hfnges 0. of the hinged bodies E;. The first
moment oE’inertia of the entire spacecraft, then,
is

(1)
=1

+
th
W
H
i1

eS¢t % [mjéj + onij) [

where the matrix on transforms the Ej—fixed
vector c. to a Bo-fixed vector, and the
vectors b. are expressed in the Bo-fixed frame.
Next, J, Jenotes the inertia matrix of the body By
about the reference point 0, while J. is the
inertia matrix of the hinged body E. in its own
frame about the hinge 0O:.. The inertia matrix of E.
expressed at the ﬂfference peint O in the Bo-fixeg
frame is denoted ij and

g

% =c .. c. -[mp b +b" (c.. c. )"+
Bt Bl Bt Bt [mibj &5+ by (S <)
X X
C.. c. . 2
(_QJ £ ) EJ ] (2)

where (*)* means the 3Jx} skew-symmetrix matrix

associated with the vector (®). The 1inertia

matrix J of the entire vehicle at the point O will
then be
0 4 0

l’ig*§ij'io*J 1)

Anticipating our later needs, the cross inertia
matrix J,. between the bodies By and Ej expressed
in the Ej-fixed frame equals

x X
igj ] ij (EjQEj) g5 (4)

As for the motion of the spacecraft, its mass
center is assumed to perform some orbital motion,
not coupled with its attitude motion wunder
consideration, To develop motion equations, the
local orbital frame is taken to be an inertial
frame. The kinetic quantities of interest
are: V _(t), the perturbational wvelocity of the
reference point 0 over the uniform orbital motion
at time t} w,{(t), the inertial angular velocity
of Bys 2.(t), the angular selocity  of each
articulaeed body E; relative to By at the
hinge 0.3 and u.(r.,t), the deformation of E; at
the location r. cE. . These quantities are taken to
be linear, first “order, infinitesimal, so that
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their products can be ignored in the analysis. The
external forces and torques acting on the
spacecraft are the force £O(t) and the

torque 50(t) acting on By at O, and the
force f£.(t) and the torque g.(t) on each Ej at the
hinge Oj. The latter pair, (E.,&j) , includes a
distributed force ﬁ.(s.,t)acting in the domain of
the body E., an¢ if ﬁj(sj.t)is the only surface
force acting on Ej’ then

£.(0) = [ b (e ) da
=j SIS (s)

g0 = g’jﬁj(gj,t) dA

where dA is an elemental area of Ej and
[j 4 IE . With the aid of the Dirac ~delta

functiod and its derivative, the distributed force
ij(ﬂj’t),,a¥5° represents a distributed moment.
Regarding the control forces and torques, those
acting on By are included in the quantities
f. and , whereas, if a control force or torque
is produced in the interior domain of E. without
acting against the core body By, then that is
included in the pair (Ej,gj); however, if, for
instance, the torque is produced by an electric
motor which rests on'B0 at the interface 0; and
exerts on E., then this is considered separately
and denoted 50‘([) (j=ly...,N}, for it produces a
reaction torque -g. . (t) which acts on Bj. The
total force £(t) and Lorque 2(t) that act on the

vehicle are

:‘V T c. = y LT N
£=£¢+ % onﬁj’ g~ 3p° % (onij + Eonjﬁj: (6)

where, of course, g(t) does not include the
control torgue .(t) at the interface 0;.
1 50) J

The elastic spacecraft under consideration is
relatively simple; it is straightforward to
develop its linear, continuum motion equations

following Hughesa'6’7. The equations governing
the' discrete variables YO'BO’gj (j=1,...,N)
are:
L ] Xe X 8
mV, - ¢ -Y¢c, .. C .u.dm =f
- =0 § —€j=3=] § IJ_OJ“J =
xe . L . - o X
eVt Lyt Gde3y L 2510385 *
J e ] (7)
c 4rx} u. dm = g
=03=37 =)
x, @ T » ] - x*
c.C..V C «+ JQ. + )., r.u., dm = A
£izjo=0 (Cgjdo5) wg * 2585 * J; 2385 goj

g: (3 = 1,...,N)

where an overdot indicates differentiation with

respect to time. To write the motion equation

governing the deformation u (r.,t) of the flexible
body Bj’ denote the related linear stiffness
operator by L.3 the body Ej is allowed to be

anisotropic and/or nonhomogeneous, and its mass
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density is denoted o0.{(r.). The continuum motion

. . P . .
equation governing the de%ormatlon Ej is then:

i ¢ - x s -
Ejﬂj * 9 (Ejolg (EjoEj + Ej) Ejo!o
xs» e ,
Ej&j + Ej} = ij(ij,t) (j=1,+..,N) (8)

The continuum motion equations (7) and (8) are

discretized in the next section.

DISCRETIZATION OF CONTINUUM
EQUATIONS OF MOTION

Irr.

Three families of modes will be employed in

this section for discretization: (1) appendage
modes, (2) hinges-free vehicle modes, and
(3) hinges-locked vehicle modes. The wuse of
appendage modes is standard; they are employed

here in order to evaluate the infinite sums that
appear in the hinges-free and hinges-locked modal
identities in Section IV in terms
first and second moments of inertia of cthe
appendages, core body, and the vehicle.

DISCRETIZATION BY APPENDAGCE MODES
modal momenta

Following Hughes“, define the

coefficients E'a and H'o concerning the
appendage (cantilever) modes g;u(gj) of the

articulated body Ei:

LI 4 j. !ﬁo(ﬁj) dm  (j=1,...,N50=1,.00,=)

J
B, 2 7.c%02 (c.) dm (9)
=jo = ‘i=j=jo=]
where dm = elemental mass. The coefficient P is
associated with linear momentum and 5.0 with
angular momentum of the mode o at the” hinge
point Oj. The modal angular momentum coefficient
relative to the reference point O (Fig. 1) is

defined as

0 x
H b, C_.P. + C_.H. (10)
=ja 4 =j 20j~jo = =0j-jo

Then the continuum equations (7) and (8)

discretize to

] xe x®

m YT £ 4 § 903‘)‘) * § 905 Z gJOQJa= £

xe . 0.'
g v 18+ L Coplyly ¢ L M0y, "

cfc. Vo JC. b+ ] FH. Q. g, t g
=j=j0=0 =0j-j0=0 “=jj ad —jo ja j © Eoj

T 2

T . 0 e T s o c a

EjanOXO * EjaEO * Hjozj * qu+ njoqja = Yja

(521, e, N} 021, 00n,m) (11)

where the superscript T indicates transpose of the
quantity; Q.o(t) is the modal coordinate

and ﬂ?a is the with

the o-th appendage mode H;o(zj) of the body E;;

frequency associated
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of mass, and,

and y?o(t) is the modal input to that mode:

T
a a
vio(0) { gja(sj)ij(sj,t) dA (12)

Eqs. (11) are a generalization of Eq. (35) of
Hughes“, for the former include articulation
motion of the appendages. Much more complex and
general equations than Eqs. (11) are available in
the vast literature on deformable multibody
dynamics; see, for instance, the works of Ho”, and
Singh et al” on spacecraft with arbitrary tree
topology. Eqs. (ll1) nevertheless may boast of
simplicity which is eminently wuseful while
designing the control systems for articulated
bodies., More importantly though, Egqs. (11) are
derived here because in Section IV they will aid
in developing modal identities. To facilitate this

task, Eqs. (l1) are abbreviated by using the
definitions
T
0" A x x
ca = lepeps -r Conenls
T )
Zoa * [Soudys +o+r Sondon]
T 4
By [R5 By el
T
0" & T T
Za = [CoiBys -+ Contyl
T
0" a 0 0
Ej = [ﬂjl ﬂjZ -.-l,
WO 8 [HOT HoT]
LY Hy »ooeer By
T A
Ej [Hjl Ejz "'lu
4 .. a ..
B, 2 aiag [ ... Hyl, 3, 2 diag [3) .o0 3]
T 4 T 4 T T
g; *® [le Q; vools Q = [91 o QN]v
T & T T]
By [Ex sor Byl
T A T T T 4 T T
Boa = lgg; «+- Bonls 8y = [7) «oo gyl
c § < c 4 c c
Ej diag lnjl sz...], gc diag [gl...g“}
T T T
a a a a a a
lj & lel sz "‘]' A9y ¢ . [ll res Yy l
(13)
Eqs. (11) then take this concise form:
T T,
mly- Ry e B BT -t
Tos
R AR oaly * 52 Q T B
0s ) [] T -
Ca¥o * doalip * 1,8, * YAy By ¥ Boa
O . 2 2 = A
Pa¥g * Hpug * B3y + 3+ 8.8, = 1, (14)
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It is interesting to compare Eqs. (14) with
Eqs. (43) of HughesA. For even more compaction of
these equations, the following matrices are
introduced:

x 4 0 "T T
ml o~ M, S sl e Bl wg

T T T

EVQ[E g
(15)

~Vv x 0 g 1,0 0

where 1 is a 3x3 identity matrix. Eqs. (14)
thereby reduce to the following three matrix
equations! one governing 8ix overall degrees of
freedom of the spacecraft, qy (t); the second
governing n_xl vector EA of na relative angular
velocities of N articulated bodiesj and the third
governing the =xl vector Q of modal coordinaces
of appendage modes of all articulated bodies.,

L) T e OT“
Hovdy * Hyala *<BA Q= gv(c) (l6.a)
Moady * Jay ¢ HaQy = 24(6) + g, (0) (16.b)

o** se 2
CEAﬂv + EAéA + QA + ECQA = IZ(t) {16.c)

Modal identities associated with the modal momenta

and ﬂAare derived in Section IV.

DISCRETIZATION BY HINCES-FREE VEHICLE MODES

mntricescgﬂ

In this technique, the continuum equations (7)
and (8) are discretized all at once. For this
purpose, the following modal expansion is
postulated for the variables in Eqs. (7) and Eq.
(8) (Reference 3):

Vole) = s;,m + I xOv;v(r')'
wg(e) =é0(c) + I oag B (o),
a;(c) -é(c) + D o5 8,0,
2 UJ (r )n (t), l = Z .

(J=1 2,...,N) (17)

gj(gj,t)

where 50, g%, and gh are the temporal coordinates
for the rigid modes of the spacecraft; the total
number of articulation degrees of freedom is n,,
so there are n_+6 rigid modes in all. Furthermore,
50 is the translation of the reference point 0,
and gh is the rotation of the spacecraft,
both in rigid modes; similarly, @, is the rotation
“of the hinged body E. relative td B, at the hinge
Oj (j'l,...,N) in &' rigid mode. The quantities
Xgy? v' and Q (j=1,...,N; v=l,..s,®) are u-th
modal coeffxcxents contributing, respectively, to
overall discrete motions V,, w,, and 2.; and
n (t) 1is the associated modal coordinate. The
ei1genfuncrion U, (r ) is that part of the hinges-
free vehicle mgge, denoted W (r), which defines
the deformation of body E. in v-th mode. Although

(r.) satisfies the co%dxtlon of zero displace-

ment and zero rotation at the hinge Dj, that is,

U,v(Oj) =0 and 5 (0 ) =0, it is not the

2 -
game as the ao-th appendage mode U (r } used
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before, because in the case of Q.U(E.), no torque
acts, by definition, at the hinge Oj
the zero deformation and zero rotation condition,
whereas 1in the «case of Qea(gj), the immobile

support of the appendage enforces that condition.
Because of the mobile support of the hinge 0., the

to enforce

total motion W (r ) of EJ in an inertial frame is
x x
ivle5) = X, @5*%Fﬂ 89y ~ Sojfidjy
+ EOjEjV(Ej) (j=1,...,N; yﬂl,--..@) (18)

where the first two terms in the right side are
because of the translation and rotation of the

core body in the v-th mode, and the third
term £¥£'u is caused by the relative rotation of
Ej at "the free hinge Oj. The motion of the core
body in v-th mode is given simply by

_ _.x
HOv(s{)) X0y™ Lo %oy (19)

Thus a hinges-free vehicle mode W (r)spans entire
-V -
spacecraft such that

LM 1)
W () =

W, {(r.), ifr=b. ¢+ C .r.

=ivTl = ) =057

(20)
(j=l,eva N3 vl .0, ,=)
Following Hughesz, the 6+na rigid modes

of a spacecraft with articulated bodies are

1, - £x’ and -£¥ (3= 1,...,n ). Not surprisingly,
the elastic modes W (r) (v=l,000,=) are
orthogonal to these rigid modes, that is:

[ £, () dm = 0;

f W,(c) dm =0,
v v

]
1=}

jj E’Jfgjv(gj) dm (21.a,b,c)

where f means the entxre vehxcle is the domain of
Lntegratxon. Eqs. (21) can be verified by
substituting the expansion (17) in the continuum
equations (7) with zero right sides. Indeed,
Eqs. {(2la,b) state that the linear and angular
momentum residing in a v-th hinges-free vehicle
mode are zero, whereas Eq. (2lc¢) expresses a zero
momentum-like property of the articulated body Ej.
These properties can be stated alternately by

defining modal momenta coefficients (E'V’h'v) for

each articulated body and (Ev,ﬁg) for all
articulated bodies collectively:

4 4 x
Ejv I, Eju(gj) dm hjv f' Ej Hj“(ﬁ') dm
b ] (22}

0 x
2, 4 % EOjEjv h“ = § [EjEOjEjv + Sﬁjhjvl

defined relative to the reference

These may be compared with the
and (10). The “zero momentum

where Eg is
point 0.
definitions (9)
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properties (21) then transform to:

+p, =0

éﬁ

X
™ Xgy T = 29y E0 J jv
0

I
i
* i EO)—OJ—Ju * Ev =2

x

S Xoy * %,

x T
g5 Cio%ov * LoiCjotov * 1525 * By T 2

(3=1,...N3 v=1,..4,=) (23)
The eigenvalue problem which governs a hinges-free
vehicle mode is given by

wic. W, (r.)

L.U. ( = .
£;) JO~Jv =}

=J=jv =) (=1, eve N3 V=1, 000,=)

(24)
where w 1is the frequency of v-th mode. The

orthogonality conditions are obtained by perform=
ing the operation Z f U (r ) (*) dv over the

eigenvalue problem (Zi) and recallxng the proper-
ties (23). Here, dv is an elemental volume. One
then obtains

[ WeIW (&) dm = & (25.a)
y oWV uv
T T 0
§{J’ju.u. dm + hi o, } + uX0v+Eu20v=6uv
(25.b)

T x T x

[m Lougy ¢ iOuE Yoy T ¥0u= 2oy * —Ou— 24, ] s, Y

(25.¢c)

rT =2 25.4

D105, Lty dv = wugs (25.d)

J 1}
where 6u“ ig the Kronecker delta.

Utilizing the modal expansion (17), the =zero

momentum modal properties (21) and (23), and the
orthogonality  properties (25), the continuum

equations are discretized cto these decoupled
equations which separately govern the rigid and
elastic modes of the spacecraft:
g 8. -
mR, -9 - % EOJ ;= £ (26.a)
x.l (1] [ 1d
Ry + 19, + § 90j—J—0ij =g (2?.b)
xR +47¢c. 8 +38 (5=1y v e )
c.C. + .C. + J.O = .t g, Flgees
£i%j0% * JoitjeS0 T =% T Boj T By ey
oC

T
L 25,8 * 87 * V()

(v=1,2,..00=)  (26.4)

where vy (t) is the scalar input to v-th mode con-
sidering all articulated bodies collectively:

'] T
v, 8 § £ gjv(gj)ﬁjqj,c) dA (27)
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These cquations are abbreviated by recalling
appropriate definitions from (13) and (15) and by
the following additional defnnxtlons

T
L . i) . Xo1 5 | 201
Gyr © Q%P T}
= . X92 L2V}
QN . .
T T L L
By eee B
[} 1 N1 T 8 [n n I.
LIV IR T el e
12 7 w = diag [ul uz...l,
A N 1
. : X Yy Yprer (28)

Here yg is a rigid mode vector, whereas 4y in

(15) is a vector of overall motion of the space-
craft; the vecto:-(b from (28) and 9, in (13)

differ likewise. Eqs. (26) now condense to this
desired compact form:

*» T..
Hovayr * Hyala
(L)
Myadyr * JJ@A T Byt Bga
v 2
G, v e, = Xof * 208 * &, (Bop * 840 * X
(29)

DISCRETIZATION BY HINGES-LOCKED VEHICLE MODES

Since these modes are defined by forcing the
articulation motien @, (j=1,...,N)
they are obtained by a modal analysis of the first

two equations in (7) and Eq. (8) from which
the Bj (j=1,...,N) terms are ignored. The torque

actually required to keep the hinges locked can be
evaluated from the third equation in (7) but that
is not relevant here. The equations for the modal
analysis are therefore:

to be zero,

. x . P [T}
m!o cu, + z 3 EOjEj dm = 0
x® . x .
c !0 +J wy * z £ (EjSOj EOJrJ]uj dm = 0
. X L had
L.u. +g¢ Ao - b ) C. +u.} =
Lijuj *+ o5 [Cio¥0 = (Sho5 ¢ =j)°Cjomg ¢ g5} = 0
(30)
Eqs. (30), in fact, govern the motion of a free
spacecraft with cantilevered appendages, so the

sought hinges-locked vehicle modes are the same as
the unconstrained modes a la Hughes ° The develop-
ment here parallels that in the previous subsec-

tion on hinges-free modes. Accordingly, introduce
the following modal expansion:
2

vy = By + DG 85, I = ]

ax=}

c
ug = @y + 1 85a50t) uy = L U5, (eydngte)
e (31)

where the superscript ¢ reminds us that these

modal quantitie% pertain to hinges-locked modes.
The quantiti n ¢ i
q ities x, & d QOu are the translation and

rotation of the core body BO in a~th mode. Like~

ORIGINAL PAGE IS
OF POOR QUALITY



wise, the eigenfunction QEG(E.) is the defor-—

mation of E. in the a-th mode, analogous
to U (r )} in the case of v-th hinges-free mode,

except chac . now & force is exerted at the
hinge 0:; to ascertain that gja(oj) =0 and

3'2?0(05) = 0. The total motion of j-th
appendage relative to the Bo-fixed frame in
a-th vehicle mode is denoted w (r ) and it equals
[cf. Eq. (18)]

c 4 ¢ _ x .c
!ju(ij) X0a (Ej * Eszj) %0 * —OJuJu(r : )
32

The a-th mode of the core body, Ega(go), on the

other hand, will be

c 4 ¢ _ x.¢
!00(50) X0a " Eot0a (33
Thus, like Eq. (20), the a-th mode !{:(5) will
be W, (r ) or H (r )} depending on the domain

under consxderatxon. Orthogonality of these modes
with the six rigid modes 1 and _Sx' similar to
Eqs. (21.a, 21.b), <can be proved weasily. To
express these conditions in terms of hinges-locked
modal momenta coefficients, define {cf. Eq. (22)]:

c 4 c S 4 us
i, Ij !ju(sj) dm _. f 41l Jm(r ;) dm
c
47 ¢, 0" nd & ’f.°.+c.h‘f
% “0iBja —a § 2520iB5a * 20jtia

(34)

Then, the above mentioned orthogonality is
[ef. Eq. (23)}:

c
M Xoq T £ ;0 t B, 9
X c c
€ X0 * J 25q * h 0 (35)

The eigenvalue problem obeyed by the n~th hinges-
locked mode H;u(gj) is

2
ut (r Y = €. WS (.7 (i=l,¢u.,N) (36)

’J Ju a —j0=ja =}

where w® is the associated hinges-locked fre-
quency. The orthogonality conditions between
a-th and 8-th modes are_

T T
c c c
fv Wy Hg dm = ] T UG CioNales) dm= g
) 3
Z j- UCTU CT ( CT X¢C - QCTCX [ )
—ja=j8 dm = MXgeXog XpoE 208 T 200% Xog
T,
2001 208 ¥ 418
I o LS, d = s an
. —ja—j—js8 “3 a8

]

These are a bit more general than Eqs. (62) of
Hughesa.

With the aid of the expansion (31), momental
properties (35), and orthogonality properties
(37), the original continuum equations (9) are
discretized to

[ ] »
mR, - c’ C,..co8. = £(¢
By = G - ] Coyeifly = 1O
x.. 20
EORE- SN RS
x [ 1] T *9 ™ CI“C
c¢c.C. R+ J .C. +J.0, + h~ = . *B.
=J—j0-0 —OJ"JOQO =573 g—Ja"u Bo; T B
(i=1,...,N)
T 2 T T
cly ¢ *% ¢ ¢ .c K
Z (hju) gj M * “a a luof * O& * 'a(tzjs)
Unlike the hinges-free set of discrete

equations (28), the last two equations in {38)
involve a new coupling term called "inertial modal

angular momentum coefficient” E;i defined as

(r.) dm =

cl A }
BSa * 15238 0850
—1-102‘00 (‘J°J° ’;5502; )9:0 ol j 5).;2;0 dm
of
which is different from h? and h defined in
(34)., The disturbance inpdt Yo (t) to each
a-th mode equals [cf. Eq. (29)]

(39) .

c 4 cT '
MO R BN gjucgj)ij(_r_j,c) dA (40)
J ]
To compact Eqs. (40), introduce

cI

J nel pel & [th . ECI]

4
LT (41)

Then, recalling pertinent definitions from (13),

_(15), and (28), Eqs. (38) contract to

M g + M8 = u (t)
Hyy Syg * Hala yylt
oe T
Mya Qyr * da n (t) = &A(t) + QOA(t)

cle *%c 2 . c c
hA nA + ﬂe(t) ‘u Ee(c) = 105 *eg Y, (42)

The vector ﬂ:(t) and y (t), and the matrices

’XO ,0° are defined like their hinges-free
companxons in (28).

IV. MODAL IDENTITIES FOR MULTIBODY
ELASTIC SPACECRAFT

Our principal concern is to compare hinges-free
and hinges-locked modes for ctheir accuracy in
representing articulation motion. To accomplish
this aim, an equation will be obtained from each
of the above three sets of discrete equations
which will be solely in terms of the articulation
motion g and stimuli. These three equations will

then be compared to yield identities,
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First, consider the discrete set (16) based on

appendage modes. By matrix manipulations, the
following equation governing 4, can be con-
structed readily:
T 2, 2y-1 -1 .
(L-H, @ +0c/s") 7,91 29, -
T 2, 2y-1 40 -1
{QA (_L * QC/S ) qZA v Yy
T 2, 2y-1 a _ -1
“Hy Qo+ oag/sT Ty, My My g vy (43)

where s is the
B,is an = x n,

Laplace variable; theoretically,
A matrix, andQ]_, an ® x = symmetric
matrix; J is an n xn, inertia matrix, and By is
the total hinge torque vector:

T
0, -1 0
quva q—)A

H, & _p0 =1 T 8
=A 2T, Mgy My Y Al L

e

-1 .T 8
9 23, - Mo My Monr By - Byt Bgy (49

In (44), lm is‘o x = identity matrix. Thus for an
equation of Q-EA (s),the coefficient of the hinge
torque g, (s) is

(1-90 (a + 297t 97N

Anticipating our later needs, now we shall prove
that the lim s+=@ of the matrix [e] in (45) equals

TR T T R

(45)

(46)

Applying the matrix inversion lemma to Al , fits
inverse is found to be:

-1 0 OT 0 -1 OT
a, =1, -P, [D° D - lTD, (47)
On the other hand, owing to the identities
(D,E,F)" of Hughes®
T
0 0 x 0
P Ta = med " f 4 Y (48)
e Jo
~e e

Also, by definition of M, in (15), and by virtue

Vv
of Eq. (1) and Eq. (3)

X

_tm1l -¢ 0 A 0
Hpy =t 0 S0 Myt B ag)
X J
=0 =0
which reduces Cum_lto
-1 0 -1 OT
U, =1, +P, M, "D, (50)

A comparison of (I uithfu;l amazes, Continuing
with the proof nevertheless, call upon the basic

identities (D,E,F)" of Hughesa to derive the
following new identities associated with the
articulation degrees of freedom:
T - T O_ .0 T 0 _
Bolly 30 BA B =Gy 32 82 7 Loa

811

T 5,0 -1
U Py = Hyp By My =

(New identities derived in this paper will be
labeled with Roman numerals as they are cited.)
These identities and Eq. (50), in turn, lead to
the identity
T a1
W, UH, =9 (1

which proves Eq. (46)

An equation analogous to Eq. (43) is obtairned
from the hinges-free discrete set (29). For that,
recall the second expansion in {(17). Then it can
be shown that

98, =90 (1 +u/s)) T (xg £+ 058+ 1)

-1
LI IS
T 2, 2y-1
v lr e 8al (1 ¢ W27 s, gt (s1)
The coefficient of the hinge torque g, (s) in
Eq. (51) equals the term (45). They both reduce

to ] for the lim s+0, and for the lim s+= they
yield, in view of Eq. (46), the identity

(L+80re) =0 (1rr)

that, since the inertia

matrix 9 is positive definite and 2a8,
definite, the modal coefficients g.v(j=l,....N;
v=l,...,w) [Eq. (17)] constitute a gonconverging
series.,

which proves a fortiori
nonnegative

The hinges-locked discrete set (42) furnishes

this aquation for gA:

T
i cl 2, 2,-1 cIs-1 . -1
[1-hy (Lvu /D709 0, =g - M M u

T T (e gy D)
L 1 XLt %HETY
The  equality  of the coefficient matrices

of Eq(’) in Eq. (51) and Eq. (52) delivers this

identity in the s-domain:

T
cl 2, 2,-1, cla~11-1
(1 -n8" (1 +u/sHhi797] 1+

2 -
9 ora_+ w15, (v)
For the lim s+0, the left side of (IV) degenerates
to 1 as does its right side. On the other hand,
taking its limit s+ and recognizing the identity
(II1) produce the identity

T
el clg-l
(L-n h 9] =0 )
The identity (IV) can be rearranged such that
it cteveals poles and zeros of the
dynamics. For that, recognize that when
3= ¢ ju (v=l,.0uy®ij = ~1) the right side
ot (IV).‘J which is also the coetficient
of gH(s) in (51), 1is wunbounded, so % jwv are the
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poles of the spacecraft. Conscjuently, for
unboundedness to occur, the left side of (IV),
expressed in terms of individual hinges-locked
modes, yields the identity

2 T
det [1 -7 (1 - /0?) tnt el 971 =9 v
- & a v —~ -u =

T
where hCI is the a-th row of the matrix
cl
Ry
matrix within {e] on the left side of (IV), which
ig the coefficient of Q gAin (52), is unbounded,
which implies cthat 2 ju: are the zeros of the

dynamics. Therefore, to realize unboundedness, the
right side of (IV) bears forth

. Similarly, when s = ¢ jmé(a = 1,...), the

det{}.*z(l"wu C]l 13T1=0 viD)

n

where 3: is the u-th row of the matrix

[Eq. (28)]. Knowing the poles and zeros, the

igenticy (IV), keeping in mind its lim, has this
alternate form [cf. (Y) of Hughesa]: S+

T n 2 g
[1- 6T nflg o G2y /| n (sZead)]
a=] a L
u=l
n 2 Rg
[1+9 2§ QA] Af (2 r (s2e?)| (vizD)
a=l @ u=l u

where n, = total number of retained modes. Because
of the ‘identity (V), however, this form seems to
be less wuseful than the form (IV). Following
Garg”’, one can examine how far the identities (IV)
or (VIII) are satisfied in the s-domain. The
identities (VI) and (VII) are useful in several
ways; for instance, known hinges-locked parameters
can be wused to determine hinges-free modal
parameters, or vice versa, after Hughes and
Carglo. Incidentally, the identities (VI) and
(VII) are analogous to the identities (M) and

(Q) of Hughes™. As in Reference 4, under
conditions of symmetry, these identities
reduce to those concerned with individual
articulation degrees of freedom. Owing to

symmetry, <ince different sets of modes will
contribute to different articulation degrees
of freedom, the set a (a=l,...,») may form n
subsets a.(j=l,...,n ) and each a, will span the
range l,..,=; the set u (u=l,...;=) fragmentates
likewise, The identities (VI) and (VII) cthen
simplify to

- T
-1 el CI g-1 R

) . {(L~u l/w W, [Eu h 9 ]t,k =8 (1x)
a =

A
-3 2 4 -
z (uZ /wC -1 [9 ‘l = Oléi,k-l,-..,na)
u, >l By ul - —u—J

X

(x)
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V. ILLUSTRATION OF MODAL IDENTITIES
AND DISCUSSION

The identities will now be illustrated for a
four-body deformable spacecraft shown in Fig. 2.
It has two flexible solar arrays, El and E,, each
having one articulation degree of freedom about
yy~ and y;-axis, respectively, relative to the
core body Bj, and a sensor having two rotational
degrees of freedom about x4 and y;-axis. These
four articulation angles are denoted
ely' Ezy, 63x' and 93 , and the spacecraft thus

has ten rigid modes. Hinges-free and hinges-locked
vehicle modal data for the spacecraft were
obtained by using NASTRAN., From a detailed finite
element model having 19,434 degrees of freedom and
3,239 nodes, 63 hinges-free and 67 hinges-locked
elastic modes below 25 Hz were computed. Since the
vehicle is essentially symmetric (the sensor
causes a slight asymmetry), both symmetric and
antisymmetric vehicle modes arise in transverse
bending and in-plane bending of the arrays, and
the vehicle modes are categorized accordingly
in Table 1 and Table 2. Fig. 3a confirms the
prediction from the identity (III) that the
hinges-free modal coefficients, in this case
oluy (u=1,...,63) for the yl—solar array, form a
nonconverging series. In Fig. 3a, the largest
modal coefficients 0 for u=8,11,18,28,... cor-
respond to those vehléie modes which predomlnately
entail torsion of the yj-array about y;-axis
(Tnble 1). In contrast, those contributing to
8, , namely, ¢3 (u=1,.,..,63), form essentially a
convergent series because the sensor is rigid, and

symmetric transverse bending of the arrays

(Table 1) or local high-frequency deformation of
B, at the sensor base produce ¢ (u= 1,...,63}.
The hinges-locked coupling coe¥f1cxents h

for y;-array and hguy for 63y rotation for gKe
Fig. 4.
forms a converging series.

modes a=l,...,67 are displayed in

. cl
Unlike oluy' hluy

The identities (III) and (V) are the simplest,
for they involve only modal coefficients, no
frequencies. The identity (III) is illustrated in

Fig. 5. The error indexes L (k=1, 3) (HF means
hinges-free) are the corresponding diagonal

elements of the (4x4) matrix [l + 9 ing]-l.In

contrast to their zero ideal value, the asymptotes

{C— vo (ORBIT NORMAY)
oy

L]

fc2

¥2

" a1 llz B, 7
Ea 3]

Figure 2. A Four-Body Deformable Spacecraft
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Table 1. Hinges-Free Modes

Affaected
Rotational
Characteristics Degrees of
of the Mode Mode No. Freedom
Transverse bending of | Symmetric 1.5.9,13,15,21,... Ooy. O3y
arrays and A-frames
Antisymmetric | 2,6, 10, 14, 16, 22, ... Og2
Torsion of arrays and Array 1 8,11,18,28,... O1y
A-frames
Array 2 7,12,19,29,... 02y
In-plane bending of Symmetric 3,... None
the A-frames and ]
solar arrays Antisymmetric | 4,17, 20, ... Box. O3x
Table 2. Hinges-Locked Modes
Affected
Rotational
Characteristics Degrees of
of the Mode Mode No. Freedom?!
Transverse bending of Symmetric 1,2,6,8,12,186 B0y
arrays and A-Frames
1 ' 2, AN e3y
Antisymmetric 3,9,13,17,20, 27,... Oz
Torsion Array 1 5,6,10,11, 14, 15,22, 23,... O1y
In-plane bending of Antisymmetric 7,18, 21,... Box
arrays and A-frames
1 8, cer 93y
Vibrations of the spacecraft 28,35,36,37,41,42,43, 44, Box
47,48,49,53,...
28,36,37,41,42,43,44,45, oy
47,48,49,53,...
28,35,36,37,38,41,42,43, B0z

44,47,48,53,...

tinformation about the interaction with 82y and 83 not available

[#1uyl

W
100

OMOOCE OTOTD

i

0 10

4===p ELASTIC MODES

bsé

J;,dhm

0 60 70

# -MODE NO.

Figure 3. Hinges-Free Modal Coefficients of Articulation Motion of y;- Solar Array,
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Figure 4. Hinges-Locked Modal Coefficients
Associated with the Articulation Motion

|, and of the

of y;-Solar Array, Ihii

Sensor about yj-Axis, 'hgay
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o
3
.“,p 0.9
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0 i0 2 ) @ 1) % 70
#- MODE NO

Figure 5. Hinges-Free Identify III: Diminishing
of Error Index with Hinges-Free Modes u

of these indexes are 0.0406 for k=l (0l rotation

of the y;-array) and 0.689 for k=3 (85,, the

x~rotation of the sensor). The error indexes
diminish discretely at appropriate modes as
predicted by Table l. For instance, for el , the
error index e diminishes at the torsxona{ modes

u=8,11,18,28,.... The index for the y,-array
motion (k=2) is the same as that for k=1, except
that it decreases instead at the adjacent
torsional modes u=7,12,19,29,... {see Table 1).
Surprisingly, the asymptote of the error index
for EJy (k=4), not included in Fig. 5, hovers at

0.9976 instead of decreasing to the ideal value
zero. Fig. 6 illustrates the hinges-locked

identity (V), rearranged as CI h 9 = 1. For

identity and the ones follow-
ing, define a ‘'completeness index (" which
approaches unity for an error-free model [Refer-
ence 1]. [The completeness index for Fig. 5 is

discussing this
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0.5

0 . _L_l_A_‘.L__f_o_W‘h“i
HL .9425° 0
Cag i

.9420[ I e

9415

S4100 L, N ST TR |

0 10 20 30 40
o - MODE NO.

Figure 6. Hinges-Locked Identify V: Crowth of
Completeness Index with Hinges-Locked Modes a

).I The growth of the diagonal elements

(1,1) and (4,4) of the matrix CIQ re
depicted in Fig. 6. Surprisingly, Jﬂongsxde the

error index e HF
11

locked) approaches unity in just two hinges-locked
torsional modes, 5> and 6 (Table 2), and its
asymptotic walue is 1.029. Fucrthermore, by con-
trast with the hinges-free completeness index

ia Fig. Sa, (}lE(HL means hinges=-

l4s Qual to 0.0024 (that is, the above mentioned
error index e?i of 0 9976), the hinges—locked

index Cda = 0,9421 in Fig. 6b is

rematkable, in fact, the first hinges-locked mode,
4 symmetric transverse bending mode of the arrays
(Table 2), contributes a mighty share, 0.9412,

HL
to Cupr

completeness

The identities which involve frequencies as
well are now illustrated. First, congsider the
identity (VII) which is summed over all hinges-
free modes (u=1,...,63) for a specific wz. When
w and are the same to several decimal
places, it is difficult to verify this identity in
this form. On the other hand, the identity (VIII)
indicates that when w and w° are truly the
same, the corresponding poles and zeros cancel
each other without affecting the articulation
dynamics. A physical explanation of this is that
when hinges—free and hinges-locked frequencies are
truly equal, that particular mode does not
contribute to the articulation motion, so such a
mode may be deleted from the study. In numerical
work, however, it is difficult to establish true
equality between two real numbers. Besides, as
will be seen shortly, for the example in hand,
sometimes even though w and w® are the same up
to three or four decimal places, the minuscule

"difference between the two is still important for

the verification of an identity. Consequently, the
following results are obtained without truncating
either modal set. Returning to the identity VII,

one  finds that  when a > 9, hinges-locked
frequencies w: are so close to a corresponding
hinges-free frequency w_that the determinant,
instead of being zero, becomes an arbitrarily

ORIGINAL PAGE IS
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large number. Among a=l,..., 9, the identity (VII)
is best satisfied with a=7 and next best with
a=2, for wnich the determinants are, respectively,
-0.00415 and 0.04732 (Table 3). The citrcumstances
which produce these results are revealed by the
ideantity (X). For a given w:, when all available
hinges-free modes are added to calculate the
(4,k) element of the left side of (X), it |is

denoted CQ where "asy" means asymptotic

. k,asy
value. Fig. 7 shows C!l as for 2=1,3, and 4. The
' is unity; however,

value of this index
this

c
3w for

ideal

when w some u and a, index

assumes an arbitrarily large wvalue, and for
plotting purposes, such large numbers are replaced
by 2 without altering their signs. In the
left. side of Fig. 7.a, in the wuseful range 0

to 1, the maximum value of C?i asy concerning the
4

y)~array rotation, 81,0 is 0.451 for the hinges-
locked mode a=2-- a symmetric transverse bending
mode of the arrays (Table 2). On the other hand,
the first torsional hinges-locked mode having
significant coupling with the rotation ely is
a=5 (Table 2 and Fig. 4), but(}?i as correspond-
’
ing to a=5 is 0.16, than 0.451 for a=2.

Although the index CTT asy for a=5 should be,
?

less

intuitively, greater than that for a=2, this
does not happen because the hinges-free frequency
w, (0.25724 Hz) is close to w, (0.25719 Hz). To

determine the contribution of the mode p=1, the
growth of CHF with successive addition of u to the
asymptotic 0.451 for a=2 is shown in the
right side of Fig. 7.a. C li is found to escalate
uw=1,8,11,18,28,29,35,41,42,...,

value

discretely at

which, except for u=l, involve torsion of the
array 1 (Table 1). The contribution from the
hinges-free mode u=l, a symmetric transverse
bending mode of the arrays (Table 1) 1like
a=2 hinges-locked mode, is however, extraordi-
narily large: 93%. Nevertheless, the bending

mode u=l is not pertinent to the articulation

motion Bly, so C?E = 0,451 for a=2 cannot  be

accepted, 'and, instead, (}¥1 = 0.16 for o=5, a
torsional mode is accepted. Next consider the
sensor motion Bay® The corresponding index,
CHF , shown on the left side of Fig. 7.b, is
33,asy HF
1.0059 for a=7 (compare with ( , and recall
11,asy

from Table 3 the value 0.00415 of the identity VII
for a=7). The growth of ng versus u for a=7 is

displayed on the right side of Fig. 7.b, where it
is observed to become unity at once when u=4. To
understand this, note that both u=4 and a=7 modes

involve antisymmetric in-plane bending of the
arrays--a motion which induces L2 (see
Table 1 and Table 2), and that w, = 0.59541 and
w3 = 0.59538 Hz. When the rotation 9, of the
rigid sensor is Iockéd, the moment of inertia

which must be turned by the antisymmetric in-plane
bending, is increased, and that lowers the fre-
quency commensurately. The ratio of the moment of
inertia of the sensor and of the core body, both
about x,-axis, is 0.0717. The decrement of 3.0E-5
Hz noted above in the frequency Wy, is mathemat-

ically so precise that ng becomes unity at once

are the

when a=7. Moreover, although w, and w;

815

same up to three decimal places, the two modes
cannot be truncated from the study of the
verification of the identities VII and X. Next,
consider @ rotation of the sensor--the rotation
coupled with the transverse symmetric bending of

the arrays (Table 1 and Table 2). The associated

index,(jzz asy’ versus a is shown in Fig. 7c. In
’

the range 0 to l, the most it becomes is a
startling low value: 0.07836 for a=2; for this a,
the growth of(lgz with u indicates that 99.99%

contribution arises from the first

transverse bending mode u=l.

symmetric

the identity (IX) for
in Fig. 3. Since this
modal para-

verification of
and 4 is considered
relates to hinges-locked

The
t=k=1
identity
meters, its left side is denoted Cgt. Earlier, the

identity (V) and Fig. & established that the
hinges-locked coupling coefficients form a con-
verging series. Therefore, the determinant
. . HL . .

identity (VI) and Clk,usy in Fig. 8 do not
become arbitrarily large numbers once u 2 28,
Iﬁgeed, only for u=3,4,21,26,27, is the index
Clk asy unbounded, by contrast with the hinges-
free index C?T as in Fig. 7a which is unbounded

’
for all a 29. The index C:t depends on the
selected hinges-free frequency wu; for a's
c c c 2

having wg >mu, the term (1 - wg /wu) becomes
negative and these particular hinges-locked
modes diminish the sum. Focusing first on
H . . .

Cu asy’ surprisingly, it stabilizes early on to
1.05 when u=7 or 8--the first two hinges—free
torsional modes. The ascent of C?% to 1.05 for
u=8 with hinges-locked modes a (Fig. 8a) indicates
significant contributions from a=5,5,10, and
11--all torsional modes (Table 2); cthe con-
tribution from higher torsional modes

attenuates rapidly because of the fast convergence

of hiiy. As for the rotation 8, , the maximum
HL . . / :
value of 044 asy’ displayed in Fig. 8b, in the

range 0 to 1 is 0,959 when u=5--the second hinges-

free symmetric transverse bending mode of the
arrays (Table 1). The growth pattern of CZE versus
a for u=5, also shown in Fig. 8b, states chat

virtually the entire contribution arises from the
first hinges-locked mode (a=1) involving symmetric
transverse bending of the arrays.

VI. SUMMING UP

To draw conclusions about the relative merits
of hinges-free and hinges-locked vehicle modes,
indexes for

Table 4 summarizes the completeness
the identities (III), (v), (IX), and (X).
Evidently, the hinges—locked indexes are far

closer to unity than the hinges-free indexes. The
superiority of the hinges-locked vehicle modes to

the hinges-free modes is established most
persuasively by comparing the indexes for the
articulation the sensor:

motion 83 of

(325 are 0.0024 and 0.0784--far remote from

s¥r a8y HL

unity, whereas 044 asy 2T€ 0.9421 and 0.9593--
1]

almost unity. It must be understood, nevertheless,
that the identities (X) and (IX) (or VII and VI)
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Table 3. Identity VII: Variation of the Hinges-Free Determinant With Hinges-Locked
Modes; Ideal Value = U
« 1 2 3 4 5 6 7 8 9

Vil[0.97106[0.04732{0.27012|0.79457 |0.68305 [0.68009 |-0.00415 0.19551|-0.32426

Minimum value of the determinant among those fora = 10,..., 63, is 74.4, and the maximum value is

o when wy = wgupto several decimal places

(A)
[ ) PO,
HF 0.45
Giasy ofdrmo
HE 044
-1 Gy
0.43
S ] S 1 o4
J 10 20 2
\ HL MODE NO.« ® HINGES-FREE MODES
1 10 S — i —— —— e~ -
0.8
F y =7
ds‘:. ASY o s "
0.4
-1 0.2
L P JE U W [1] O S SR FP Ny S SN |
i6 20 o 10 26 1] @ 3] & 70
HLMODENO. o HINGES-FREE MODES
2r ©
S .
HF 0.078357 — S
Cea asy o} P -
h HF 0.078256 L
(“ o =2
-1 0.078356
) S | T § BOTBISAL . . . . . . et e i b
0 L) 20 ] L1 I M [ 86" 70
HLMODE NO. o HINGES-FREEMODES o
Figure 7. Identity X: Asymptotic Values of the Hinges-Free (HF)

Completeness Indexes Versus Hinges-Locked (HL) Mode a,
and Growth of this Index Versus Hinges-Free Modes
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L 0.95940
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0.95935
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Figure 8. Identity IX: Asymptotic Values of the Hinges-
Completeness Indexes Versus Hinges-Free Modes, and
Growth of this Index with Hinges-Locked Modes
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Table 4. A Summary of the Completeness Indexes for
Hinges-Free and Hinges-Locked Vehicle Modes;

Ideal Value =

1

Identity .
Hinges- W Hinges- Associated
Fres (HF} |4 _gHF Identity | Locked (HL) [Identity| Identity Articulation Mode of
Indexes {t,asy X Indexes \' IX Motion Deformation
L .
d*ﬁ1lasy 0.9594 |0.160 |IH 11.asy |1:029 [1-:08 @1y [Torsion
(HE 0.311 | 1.0059|cHL teot |(reot e Antisymmetric
33,asy 33,asy 3x in-plane bending
HF, 0.0024 |0.0784(cHL 0.9421/0.9593 e Symmetric trans-
44 asy 44,asy 3y verse bending

{to be determined

represent two different situations: in the former,
the hinges-free modes are employed to yield a
bounded response at a hinges-locked frequency; and
in the latter, the hinges-locked modes are used to
elicit an unbounded responge at a hinges-free
frequency. Therefore, a comparison of the indexes 4,
from these identities is slightly inappropriate
perhaps; yet the conclusion from Table 2 seems
inevitable that the hinges-locked vehicle modes
yield a much more accurate model for simulation
than the hinges-free vehicle modes do. This is
caused by the nonconvergence of the hinges-free 5.
modal coefficients in contrast with the rapid
convergence of the hinges-locked coupling
coefficients--the attributes corroborated by the
identities. Besides contrasting one family of
modes with the other, the identities are clearly 6.
useful in sifting through scores of finite-element
generated modes to select a few pertinent modes
for an articulation degree of freedom in consid-
eration. An important extension of the preceding 7.
work is to devise identities which involve modal
coefficients and frequencies of only one family of
modes, _hinges-free or hinges-locked, not both.

Hughes has formulated such identities for an
elastic body with no articulated members. 8.
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